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Abstract 37	

 Vertically-integrated atmospheric moisture transport from ocean to land, VMFC, is a dynamic 38	

component of the global climate system but remains problematic in atmospheric reanalyses with 39	

current estimates having significant multi-decadal global trends differing even in sign.  Regional 40	

VMFC trends over continents are especially uncertain. Continual evolution of the global observing 41	

system, particularly step-wise improvements in satellite observations, has introduced discrete 42	

changes in the ability of data assimilation to correct systematic model biases, manifesting as non-43	

physical variability. Land Surface Models (LSMs) forced with observed precipitation, P, and near-44	

surface meteorology and radiation provide estimates of evapotranspiration, ET.  Since variability 45	

of atmospheric moisture storage is small on interannual and longer time scales, VMFC = P-ET is a 46	

good approximation and LSMs can provide an alternative estimate.  However, heterogeneous 47	

density of rain gauge coverage, especially the sparse coverage over tropical continents, remains a 48	

serious concern. 49	

 Rotated Principal Component Analysis (RPCA) with pre-filtering of VMFC to isolate the 50	

artificial variability is used to investigate artifacts in five reanalysis systems.  This procedure, 51	

though ad hoc, enables useful VMFC corrections over global land.  P-ET estimates from seven 52	

different LSMs are evaluated and subsequently used to confirm the efficacy of the RPCA-based 53	

adjustments. Global VMFC trends over the period 1979-2012 ranging from 0.07 to -0.03 mmd-1 54	

decade-1 are reduced by the adjustments to 0.016 mmd-1 decade-1, much closer to the LSM P-ET 55	

estimate (0.007 mmd-1 decade-1).  Neither is significant at the 90 percent level. ENSO-related 56	

modulation of VMFC and P-ET remains the largest global interannual signal with mean LSM and 57	

adjusted reanalysis time series correlating at 0.86.   58	

  59	
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1. Introduction 60	

 Moisture transport to land from the global oceans is a crucial process linking the global water 61	

and energy cycles and is also at the heart of societal concerns regarding terrestrial water 62	

availability, food security, exposure to extreme weather events, and climate change.  Recent best 63	

estimates of the net atmospheric transport of water to land (Rodell et al. 2014) put the 64	

climatological amount at 45.8 +/- 6.7 x 103 km3yr-1, or about 40% of precipitation falling over 65	

land.  The remainder of land precipitation arises from moisture recycling via evapotranspiration, 66	

ET (Eltahir and Bras, 1994; Trenberth 1999; Bosilovich and Schubert, 2002).  The variability of 67	

this transport and its potential long-term trend at regional scales are emerging as a prime concern.  68	

Tropical circulations linked to sea-surface temperature (SST) variability exert first order controls 69	

on the delivery of water to land by virtue of El Niño / Southern Oscillation (ENSO) events 70	

(Ropeleski and Halpert, 1987; Dai and Wigley, 2000; Gu et al, 2007; Robertson et al, 2014). Mid-71	

latitude storm track changes embodying teleconnections with tropical forcing also have significant 72	

variations at higher latitudes.  Over longer time scales Pacific Decadal Variability (PDO / PDV), 73	

(e.g. Power et al, 1999; Dai 2013; Lyon et al, 2013) and other basin scale phenomena (e.g. the 74	

Atlantic Multi-decadal Oscillation, AMO, Enfield et al, 2001; Sutton and Hodgson, 2005; Ting et 75	

al, 2011) also modulate moisture transport. Anthropogenic radiative forcing changes and the 76	

consequent hydrologic cycle effects are expected to produce regional variations, encapsulated in 77	

the “wet get wetter / dry get drier” paradigm (Chou and Neelin, 2004) wherein hydrologic 78	

extremes are expected to increase.  As yet, evidence for this behavior in observational data sets is 79	

weak at best (Greve et al, 2014).  There is also substantial uncertainty as to trends in soil moisture 80	

dryness depending on diagnostic approaches and choice of observed precipitation and surface 81	

meteorological forcing (Dai, 2011; Sheffield et al, 2012, Trenberth et al, 2014).  Untangling the 82	
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role of these varied water and energy cycle mechanisms and their relationship to moisture transport 83	

continues to be a challenging task. 84	

 Moisture transport syntheses are routinely produced by reanalysis efforts (e.g. Kalnay et al, 85	

1996; Onogi et al, 2007; Saha et al, 2010; Dee et al, 2011; Rienecker et al, 2011; Kobayashi et al, 86	

2015) that blend diverse measurements of wind, moisture and temperature and other observations 87	

with first guess estimates from model short-term forecasts.  While reanalyses effectively reconcile 88	

observations with physically-based dynamical models, there are a number of practical problems 89	

which result in moisture transport fields typically having substantial systematic time-dependent 90	

biases (Trenberth et al, 2011; Robertson et al, 2011; Lorenz and Kunstmann, 2012; Trenberth and 91	

Fasullo, 2013; Robertson et al, 2014).  The root of the difficulty lies in the fact that model physics 92	

(e.g. moist convective parameterizations, turbulence and radiation) each have shortcomings so that 93	

assimilating models have biased climatologies.  Once initialized, model forecasts (first guesses for 94	

analyses) “drift” toward a preferred state that differs from reality.   But input data streams that 95	

correct this drift are non-stationary in the sense that observing system data densities, and satellite 96	

observations especially, have a time dependent ability to correct the model first guess fields.  97	

Therefore discrete biases develop in water and energy fluxes and transports.   98	

 For reanalyses the vertically-integrated atmospheric moisture budget over land grid points is,    99	

 100	

!"#
!$

	= VMFC − P + ET + ANA	,       (1) 101	

 102	

i.e., Wa, vapor plus condensate increases as the result of vertically-integrated atmospheric moisture 103	

flux convergence (VMFC), evapotranspiration, ET, and is depleted by precipitation, P.  In 104	

reanalyses, the analysis increment (ANA) represents the departure of the forecast from the analysis 105	
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divided by the temporal length of the corrector step; specifically in the case of MERRA and 106	

MERRA-2, the forcing needed to drive the evolving reanalysis to the final analysis in a 6h 107	

corrector step.  Ideally this term should be randomly distributed about zero.  Instead, time-108	

dependent biases typically characterize ANA, reflecting bias contained in each of the physical 109	

terms in (1).  Many previous studies (Trenberth and Guillemot, 1998; Lorenz and Kunstmann, 110	

2012; Trenberth and Fasullo, 2013) suggest that VMFC estimates have more consistency among 111	

reanalyses than P-E derived from the model physics.  But still, significant global land trends in 112	

VMFC were found by these studies.  113	

 These issues are seen in Figure 1a which shows reanalysis VMFC monthly anomalies around 114	

their respective annual mean.  Trends over the period 1979 to 2012 range between -0.03 to 0.08 115	

mm d-1 decade-1 (Table 1) and represent roughly -2.0% to 5.0% of the climatological annual 116	

means. These trends are difficult to justify physically given recent estimates of P and ET changes 117	

(New et al, 2001; Jung et al, 2010) over recent decades. Discontinuities in the satellite record, in 118	

particular with the beginning of Special Sensor Microwave Imager (SSMI) series in July1987, the 119	

Advanced Microwave Sounding Unit-A (AMSU A) in late 1998, and Atmospheric Interferometer 120	

Sounder (AIRS) in 2002 are known to link with abrupt changes in water and energy fluxes 121	

(Bosilovich et al, 2011; Trenberth et al, 2011 and Robertson et al, 2011; 2014; Bosilovich et al, 122	

2015).   123	

 LSMs and other related diagnostic models constrained by observations of precipitation, near-124	

surface atmospheric variables and radiation offer an independent estimate of terrestrial P-ET.  In 125	

these observationally-constrained models, the water budget has the form 126	

 127	

!"3
!$

= P − ET − RO        (2) 128	
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 129	

where column terrestrial water (WT, soil plus vegetation) is sustained by P but depleted by runoff, 130	

RO, and ET.  Through efforts at the same institutions involved in global data assimilation (e.g. 131	

NASA, NCEP and ECMWF) and various internationally coordinated programs (e.g. the Global 132	

Land Data Assimilation System, [Rodell et al, 2004]; the Global Soil Wetness Project, GSWP and 133	

its successors, GSWP-2 and 3 [Dirmeyer et al, 1999, 2006]; Water and Global Change, WATCH, 134	

[Harding et al, 2011]; Trends and Drivers of Regional Sources and Sinks of Carbon Dioxide, 135	

TRENDY, [Sitch et al, 2013]), reasonably mature diagnoses of P-ET are now available.  These 136	

syntheses of land surface state and fluxes have facilitated the quantitative study of droughts and 137	

hydrologic variability-- their scale, intensity, and some assessment of changes on a continental and 138	

global basis (e.g. Koster et al, 2009, 2011; Wisser et al, 2010; Haddeland et al, 2011; Sheffield et 139	

al, 2012; van Dijk et al, 2013). Figure 1b shows corresponding P-ET monthly anomalies from a 140	

number of these sources, along with their ensemble mean.  To the extent that atmospheric moisture 141	

storage anomalies on monthly time scales are small reanalysis VMFC and P-ET should be 142	

equivalent.  At interannual to near-decadal time scales the agreement between these two quantities 143	

is reasonably good with systematic deficits of (excess) moisture transport to land and smaller 144	

(larger) P-ET during El Niño (La Niña) events.  El Niño events in 1982/1983, 1986/1987, 145	

1991/1992, 1997/1998 coincide with anomalously weak ocean to land moisture transport.  After 146	

the turn of the century only the 2004/2005 and 2009/2010 events are prominent.  At longer scales 147	

though the large trends in many of the reanalyses (0.08 and 0.07 mmd-1 decade-1 for MERRA and 148	

CFSR) are not shared by the LSMs whose mean trend is 0.007 mmd-1 decade-1.  Against the 149	

prominent interannual and longer excursions the mean LSM global land trend is not significant at 150	

the 0.90 level.   151	
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 Further evidence for the likelihood of small trends in these budget components comes from the 152	

time series of annual global runoff shown in Figure 2, (Dai, 2009; updated by Dai, 2016).  The 153	

values shown here are now in terms of mmy-1 since the RO values are aggregated over water years 154	

(OCT through SEP).  The RO trend (0.26 mmy-1) is roughly one half that of P-ET, so that (2) 155	

implies a net continental water storage trend over the 30 plus year period.  This estimate is likely 156	

quite uncertain, although recent work by Reager et al. (2016) finds storage rates of 0.71 (+/-.20) 157	

mmy-1 over the period 2002-2014 from GRACE measurements.  The relevant point here though is 158	

that the independent RO and P-ET estimates both provide evidence that large multi-decadal trends 159	

in reanalysis VMFC are exaggerated. Taken together with the known inconsistencies introduced by 160	

the changing observing system and other observational evidence against such large global trends, 161	

the VMFC decadal trends should be treated with considerable skepticism.  162	

 The objective of this paper is to explore reanalysis VMFC discrepancies with independent 163	

LSM-based estimates in more detail. Specifically: (1) We aim to characterize and quantify 164	

observing system influences that produce non-physical trends in reanalysis VMFC trend over 165	

global land.  We explore some of the regional patterns of variability, noting how sensitive global 166	

VMFC is to regional uncertainties.  (2) In this process, we consider the P-ET record of several 167	

observationally-constrained LSMs as a surrogate for validation of VMFC.  But uncertainties in 168	

forcing data as well as the model formulations are still important error sources (Jimenez et al, 2011 169	

and Mueller et al, 2013).  Thus, we examine differences among the P-ET estimates and evaluate 170	

their utility as a means of reanalysis validation. (3) We then show that using Rotated Empirical 171	

Orthogonal Function (REOF) analysis, along with some pre-filtering, artificial steps and trends 172	

induced by changing satellite data streams can be largely isolated and removed.   173	

 174	
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2. Data 175	

 Our investigation depends primarily on monthly mean data from global reanalyses and 176	

observationally constrained land surface models. Since available fields are at different native or 177	

archived grid resolutions, we interpolated all data to a 1.0 degree latitude by longitude resolution.  178	

Unless otherwise noted, all variability estimates are anomalies that were calculated by removing 179	

from the total fields a monthly resolved climatology for the respective data sets at each gridpoint 180	

over the period Jan 1979 trough Dec 2010.  Some minor departures from these dates are noted in 181	

the discussion below.  182	

a. Reanalyses 183	

 VMFC is calculated from five state-of-the-art reanalysis projects— the NASA Modern-Era 184	

Retrospective analysis for Research and Applications, MERRA, (Rienecker et al. 2011) and an 185	

updated version MERRA-2 (Gelaro et al. 2016; Molod et al, 2015; Takacs et al, 2015); the 186	

European Centre for Medium Range Weather Forecasting (ECMWF) Interim Reanalysis, ERA-I, 187	

(Dee et al. 2011); the new 55-year reanalysis produced by the Japanese Meteorological Agency, 188	

JRA-55, (Kobayashi et al, 2015) that extends from 1958 to 2012; and the National Centers for 189	

Environmental Prediction Climate Forecast System Reanalysis, NCEP / CFSR (Saha et al. 2010).  190	

For ERA-I and JRA55 northward and eastward components of vertically-integrated moisture 191	

transport were available and the horizontal flux divergences of these quantities were computed.  192	

For MERRA and MERRA-2 the divergence of the vertically-integrated transport was archived as a 193	

standard product. CFSR VMFC has been derived by Trenberth et al. (2011) and was obtained 194	

directly from the National Center for Atmospheric Research. 195	
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 In addition to the references noted here more in-depth documentation of these reanalysis 196	

products, assimilating models and data used can be found at https://reanalyses.org/.  Some of the 197	

more salient details of these reanalyses are provided in Table 2. 198	

b. Land Surface Models 199	

 Products generated by LSMs rely on forcing data from reanalysis output as a first guess but, 200	

crucially, incorporate in situ observations, gauge precipitation and some satellite data to relax 201	

substantially the biases of these initial estimates (e.g. Dirmeyer et al, 1999; Sheffield et al, 2006; 202	

Weedon et al, 2011). Still, there remain uncertainties whose origin and characteristics can be 203	

complex; thus, evaluation and validation of ET (and sensible heating and soil moisture) estimates 204	

is an ongoing process with assessments that have targeted model formulation and input forcing 205	

(Kato et al, 2006; Badgley et al, 2015) and used river discharge, GRACE, and field data (Zaitchik 206	

et al, 2010; Rodell et al, 2011) for validation. Intercomparison and validation efforts within larger 207	

collaborative efforts of LandFlux (Jimenez et al, 2011; Mueller et al, 2013) and WaterMIP 208	

(Haddeland, 2011; Harding et al, 2011) are generating needed quantitative perspectives on flux and 209	

surface state uncertainties.   210	

Seven different estimates of P-ET are used in this study, each constrained by observational 211	

forcing: three are from land surface hydrology models: the Global Land Data Assimilation System 212	

initiative, GLDAS-2 (Rodell, 2004); MERRA-Land (Reichle et al, 2011; 2012); the MERRA-2 213	

land component (Reichle and Liu, 2014) that runs as part of the assimilation but uses an 214	

observation corrected precipitation analysis; and ERA-Interim Land (Balsamo et al, 2015).  Two of 215	

the models ORCHIDEE (Organising Carbon and Hydrology In Dynamic Ecosystems) model 216	

(Kriner et al, 2005) and the Common Land Model, CLM4C, (Oleson et al, 2010; Lawrence et al, 217	

2011) are dynamic global vegetation models used in the Trends and Drivers of Regional Sources 218	
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and Sinks of Carbon Dioxide (TRENDY) initiative (Sitch et al, 2013), a contribution to the 219	

REgional Carbon Cycle Assessment and Processes (RECCAP; Canadell et al., 2013).  Finally, a 220	

diagnostic ET estimate from the MPI-BGC flux data set (Jung et al., 2009; 2010) uses a machine-221	

learning methodology to scale-up eddy covariance measurements from FLUXNET (Baldocchi et 222	

al. 2001).  A surface energy balance constraint is combined with absorbed photosynthetically 223	

active radiation data derived from SeaWiFS (Gobron et al. 2006).  For consistency with the 224	

derivation of this ET data set we combine it with GPCC V6 precipitation to construct P-ET 225	

gridded values.  Details and further references for these products are given in Table 3. 226	

c. Other Data 227	

 From the CMIP-5 AMIP archive (http://cmip-pcmdi.llnl.gov/cmip5/data_portal.html) we 228	

selected five data sets for analysis that roughly sample the breadth of model diversity: the GFDL-229	

HIRAM-C180, GISS-E2-R, HadGEM2-A, MIROC5, and MRI-CGCM.  Their monthly P-ET 230	

fields are available for the period January 1979 through December 2008.  Global runoff as 231	

presented by Dai, 2009 (updated by Dai, 2016) were used in Figure 2.  These data are used for 232	

comparison of time series behavior. 233	

 234	

3. Isolating non-physical changes in reanalysis VMFC 235	

  In the process of generating reanalyses, the analysis increment, ANA, in (1) yields information 236	

on the mismatch between the first guess (model forecast) and the observations.  Schubert and 237	

Chang (1996) employed a least squares analysis of the projection of the physical terms in the 238	

moisture budget onto ANA to infer errors in the GEOS reanalysis budget terms.  Robertson et al. 239	

(2014) used the results of a principal components analysis (PCA) applied to MERRA ANA to 240	

regress out artifacts in the water and heat budget flux terms.  That study showed that non-physical 241	
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modes of variability, due largely to increasing amounts of satellite data and their ability to counter 242	

model biases, can have prominent regional to global structure.  Since ANA is not readily available 243	

for all of the reanalyses used in this study we use PCA in conjunction with pre-filtering to identify 244	

these non-physical components in the reanalysis VMFC.   245	

 The form of the continental moisture budget equation we analyze is  246	

 247	

 VMFC	 = 	P − ET	 + 	Res,        (3) 248	

 249	

where each term is a monthly gridpoint anomaly. Here we have subsumed all uncertainties 250	

regarding the moisture storage term and the remaining imbalance into a residual term.  This 251	

framework differs from (1) since we are taking P-ET from the LSMs, a source independent of the 252	

reanalyses.  How effectively can we then dissect reanalysis VMFC into its physical part and that 253	

due to observing system effects? 254	

 Simple PCA provides a compact treatment of variance contributions by mutually orthogonal 255	

modes in terms of the spatial coherence of the variability (EOFs) and associated temporal 256	

variability (PCs). Successive modes explain the maximum amount of remaining variance. 257	

However, individual PCA modes cannot generally be equated with specific sources of variability.  258	

Nor can we guarantee physical signals and assimilation artifacts to be collected into separate 259	

modes.  After examining raw VMFC EOFs and PCs from a PCA decomposition for each 260	

reanalysis it was noted that while apparent non-physical variability dominated the leading few 261	

modes, these were typically mixed with additional ENSO signals.  262	
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 To identify the artifacts more clearly we first pre-filtered the VMFC.  The first eight PCs of an 263	

EOF analysis of Global precipitation Climatology Center (GPCC) precipitation were used to 264	

largely remove VMFC physical signals at each grid point via principal component regression:  265	

 266	

VMFC89 			= 	VMFC	 −		 𝑐𝑜𝑣(𝑉𝑀𝐹𝐶, 𝑃𝐶CD
CEF ) ∙ 𝑃𝐶C,	       (4) 267	

 268	

where VMFCpf is the pre-filtered VMFC and PCi is the ith PC of the GPCC precipitation.  To the 269	

extent that ET co-varies with P, we can think of this step as removing VMFC co-varying with P 270	

and ET.  This approach has two attributes:  First, it does not add any source of physical variability 271	

to VMFC since by construction it only removes VMFC signals that project onto P variability.  This 272	

would not be the case if we just subtracted the P anomalies from those of VMFC.  Second, since 273	

we are first removing much of the physical VMFC signal, this minimizes the likelihood that any 274	

subsequent analysis of VMFCpf will mistakenly identify physical low-frequency behavior or trends 275	

as being artifacts.    276	

 We then take a conservative approach of using just the leading few modes of a rotated PCA of 277	

VMFCpf as representing the bulk of the artifact signals.  We chose to rotate the modes (i.e. make 278	

linear combinations of them) to collect regional variability into fewer leading modes.  Using the 279	

Varimax constraint (Richmond, 1986), we rotated the leading 10 modes. The raw PCs were scaled 280	

by -1/sqrt(eigenvalues) before input to the rotation matrix so as to preserve orthogonality among 281	

the rotated PCs yet relax that constraint for the rotated EOF patterns.  The product of the RPC time 282	

series and the REOFs recovers each mode’s contribution to VMFC variability.  The resulting 283	

“artifact” modes can then be subtracted from the raw VMFC leaving VMFC*, the estimated 284	

physical variability, 285	



 13 

 286	

 VMFC∗ 		= 		VMFC		 −		 𝑅𝐸𝑂𝐹M
NO 	 ∙ 𝑅𝑃𝐶M

NO
			

P
MEF ,     (5) 287	

 288	

where REOFj
pf and RPCj

pf are the jth REOF and RPC of VMFCpf.  Inserting (5) into (3) we have 289	

 290	

VMFC			 = 	VMFC∗ 		+ 	 𝑅𝐸𝑂𝐹M
NO 	 ∙ 𝑅𝑃𝐶M

NO	P
MEF 		= 		P − ET		 + 	Res  .   (6)  291	

 292	

Since VMFCpf is determined by an ad hoc procedure that only minimizes the presence of true 293	

physical variability we can’t regard this whole signal as being the artifact to be removed.  Thus, a 294	

more conservative approach is to use only the leading modes that have some obvious relationship 295	

to changes in the assimilated data streams.   To the extent that VMFC* and P-ET agree, the Res 296	

term is explained by the sum of the “artifact” modes and other non-systematic VMFC and P-ET 297	

errors.  Results of this analysis and the methods to determine the number of modes used along with 298	

a sensitivity analysis are presented in section 7. 299	

 300	

4. Regional VMFC and P-ET contributions to global land averages 301	

 a. Regional Interannual Signals and Trends 302	

 To determine the extent to which variability shown in Figure 1a, b is manifest regionally, we 303	

first examine maps of root mean square (RMS) monthly mean VMFC anomalies (Figure 3, left 304	

panel) and trends (right panel) for each reanalysis over the period 1979-2012.  Anomalies are 305	

departures from the respective monthly varying climatologies.  For comparison, the RMS and 306	

trend of the ensemble LSM P-ET and reanalysis VMFC are shown in Figure 4.  The anomalies 307	

were composited before the RMS and trend were calculated.  In addition the MERRA and 308	
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MERRA-2 values were averaged to form one sample so as maintain diversity of the reanalysis 309	

systems and LSMs considered.  310	

 In general terms, the RMS values of ERA-I, JRA-55 and MERRA (Figure 3) agree reasonably 311	

with those of the LSM ensemble mean (Figure 4). MERRA-2 and CFSR RMS values are a factor 312	

of 2 or more greater in many places over tropical continents.  One striking feature is that except for 313	

MERRA all reanalyses have larger RMSs over west central Africa compared to that of the LSM 314	

ensemble mean. LSM values are typically less than 1.0 mm d-1 there whereas reanalysis values 315	

exceed 1.5 to 2.0 mm d-1 over broad areas and are frequently much larger.  There are great 316	

observational challenges over tropical continents, especially Africa, not only for the radiosonde 317	

density but also for rain gauge and surface atmospheric measurements.  Over much of South 318	

America, reanalysis VMFC variability agrees well with that of the LSMs, again with MERRA-2 319	

and CFSR being much larger.  Variability over the headwaters of the Amazon Basin is slightly 320	

stronger in the LSM versus the reanalysis ensembles.  A separate center of strong variability 321	

common to the reanalyses and LSMs (Figure 4a, b) is present over the La Plata Basin, a region of 322	

strong convective activity and storm track origination, both modulated by ENSO.  323	

 Reanalysis VMFC trends show regional structure that does not average out in the ensemble 324	

mean and contrasts in many areas with ensemble LSM trends (Figure 3 right, Figure 4c, d).  Strong 325	

downward trends exceeding 1 mmd-1decade-1 dominate Central Africa in all reanalyses except for 326	

CFSR which is strongly positive.  These signals are much weaker in the LSMs.  Upward trends 327	

exceeding 1 mmd-1decade-1 in the reanalyses are seen in East Africa but are not found in the LSMs.  328	

The Maritime Continent and upper reaches of the Amazon basin trend upward in all reanalyses in 329	

agreement with the LSMs.  Negative VMFC tendencies extend from southern Brazil through the 330	

La Plata Basin but are much less organized than the negative P-ET values from the LSMs.  331	
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Somewhat surprising is the lack of agreement between the reanalyses in terms of trends over the 332	

U.S. In this area of dense observational data LSM trends are near zero but ERA-I and JRA-55 have 333	

strong downward trends.  In another data rich region over northern and eastern Europe, the upward 334	

VMFC trends extend across all reanalyses but are very weak in the LSMs.   335	

 One might wonder whether variability of moisture storage Eq. (1) might be large enough to 336	

explain some of the discrepancies between LSMs and the reanalyses.  We calculated monthly 337	

mean ¶Wa/¶t from MERRA-2 using 1-hour data since this intra-monthly time resolution provides 338	

the largest amplitude signal.  Monthly mean, atmospheric storage anomalies averaged over global 339	

land (not shown) are an order of magnitude less than VMFC and P-ET values shown in Figure 1a, 340	

b. However, regional monthly mean RMS Wa tendencies can reach near 0.50 mm/day in 341	

subtropical regions and are not negligible for constructing moisture budgets over many areas.  342	

Nevertheless, these RMS tendencies are much smaller over tropical continents and cannot explain 343	

the reanalysis / LSM discrepancy over Central Africa.  Furthermore, regional trends in moisture 344	

storage are negligible and cannot explain the differing trends for VMFC compared to P-ET in 345	

Figures 3 and 4.   346	

 347	

5. Analysis of regional VMFC errors 348	

 The results of section 4 reinforce our assertion that the differences between the LSM P-ET and 349	

the reanalyses VMFC variability on longer than interannual time scale are attributable to 350	

systematic reanalysis errors that have largest expression over tropical regions.  We now examine 351	

several of these specific regions where the LSM P-ET and reanalysis VMFC differ so strongly. 352	

a. Western Equatorial Africa 353	
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 Based on the trend differences in Figures. 3 and 4 we examine the region extending from 10o 354	

W to 20oE and from 5oS to 5oN.  Time series of VMFC for the reanalyses and mean LSM P-ET is 355	

shown in Figure 5a.  Each reanalysis shows a distinct change in behavior near the end of 1988. 356	

ERA-I drops sharply in a step-like manner as does JRA55. MERRA amplitudes decrease by half 357	

but with far less evidence of a change in mean value.  Attributing these changes to a specific data 358	

stream is difficult. SSMI ingest began in late 1987 for the reanalyses but these effects have to be 359	

indirect since the radiances are not used over land.  The transition between NOAA9 and NOAA11 360	

MSU data also occurs in late 1988.  Near the end of 1998 MERRA and JRA55 show a return to a 361	

higher amplitude seasonal oscillation with opposite polarity of the pre-1988 period.  The MERRA 362	

VMFC anomalies also begin a drop over the next 5-7 years.  CFSR shows a pronounced increase 363	

in 2002 consistent with the beginning of AIRS data.  Characteristic of each data set is a change in 364	

the annual cycle at the end of 1988 and again in 1998.  The annual cycle phase shifts between 365	

these periods and its amplitudes decrease in the 1988-1998 period.  Clearly, these signals are not 366	

physical. 367	

 Some insight into MERRA’s behavior can be gleaned from Figure 5b.  In addition to the 368	

MERRA VMFC anomalies here we also plot the first two PCs of the global, vertically-integrated 369	

moisture analysis increment, ANA, which is the forcing needed to drive the forecast as close as 370	

possible to the analysis of observations. These PCs are analogous to those plotted in Figure 7 of 371	

Robertson et al. (2011).  PC1 minus PC2 also almost exactly recaptures the VMFC time series. 372	

The systematic, non-random behavior of the two PCs is evidence of systematic changes in the 373	

ability of the data to correct the model forecast first guess. PC1 shows a small but clearly visible 374	

drop in late 1987 coincident with SSMI availability.  Further distinct drops in late 1998 and again 375	

in late 2000 correspond to NOAA15 and NOAA16 AMSU-A data onset.  PC2 carries the main 376	
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signal of the seasonal cycle change.  The distinct reduction in seasonal cycle amplitude between 377	

1992 and late 1998 corresponds to the tenure of NOAA12.  This PC2 behavior is common to all 378	

three reanalyses except CFSR suggesting that some combination of satellite-induced changes in 379	

the moisture analysis are significant and that the temporal stability of the reanalysis moisture 380	

budgets in this region is unreliable.  381	

b. Coastal Ecuador / Colombia 382	

 The coastal Ecuador / Colombia region we examined is land area encompassed within the 383	

boundaries of Eq. to 10N and 80W to 70W.  The choice of this area is motivated by examination of 384	

the PCA results to be discussed in section 7 (not shown).  Clearly ERA-I is the outlier here (Figure 385	

5c), particularly with respect to the jump in VMFC in the spring of 2004.  This zero-order change 386	

appears associated with the assimilation of METAR surface pressure reports beginning at this time 387	

(Figure 11 in Dee et al, 2011).  It is unclear as to exactly why these data produce this effect but 388	

assimilation of surface pressures that are in disagreement with the first guess forecast could cause 389	

analyzed mass changes that subsequently affect the divergent wind, vertical motion and, 390	

ultimately, moisture transport fields.  These effects can then propagate some distance before being 391	

damped.  Despite the small area of influence this large near zero-order change in VMFC is the 392	

primary signal of ERA-I RPC2. In this region we also see some evidence of jump-like behavior for 393	

ERA-I VMFC anomalies in late 1987 although the presence of what appear to be ENSO-related 394	

signals in 1982/83 and 1986 complicate the actual magnitude of changes.  Why this VMFC 395	

increase is more pronounced for ERA-I than in MERRA or JRA55 is not yet clear.  Except for this 396	

ERA-I problem after NH Spring 2004, the agreement between the LSM mean and the reanalyses is 397	

quite good after about 1990.  398	

 399	
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c. Central U.S. 400	

 A large downward trend in ensemble mean VMFC over the central U.S. was noted in Figures. 401	

3 and 4c, driven primarily by ERA-I and JRA-55. The time series in Figure 5d shows a distinct 402	

downward transition for these two reanalyses of approximately 0.6 mmd-1 at the end of 1994.  403	

Since VMFC climatological values are of comparable size in this region (Figure 6a) this represents 404	

a significant change in the moisture balance.  Although there is also a decrease in P-ET from the 405	

LSMs before and after 1995, that change is much more gradual. A change in sources of 406	

conventional data from historical archives to the ECMWF operational feed beginning in 1995 407	

(Uppala et al, 2005) may explain its distinct VMFC decrease In ERA-I.  JRA-55 incorporated this 408	

same data as used by ECMWF (Kobayashi et al, 2015) which may explain the similar 409	

discontinuity in that system.  Complicating this interpretation is the fact that 1995 also marks the 410	

transition from NOAA 11 to NOAA 14 sounder coverage.  Because of the diurnal drift of the PM 411	

satellite equatorial crossing times there was approximately a 3h diurnal cycle difference between 412	

these two sensors.  Bosilovich et al. (2015) have analyzed VMFC behavior in MERRA but note 413	

that this shift occurs near 2000 and may be more related to the assimilation of ATOVS and AIRS 414	

data. The exact attribution of the VMFC changes to different data steams remains to be settled; yet, 415	

it is clear that even over data rich regions such at the continental U.S. significant VMFC artifacts 416	

exist. 417	

 418	

6. LSM P-ET signals and uncertainties 419	

Although observationally-constrained LSMs offer a physically consistent estimate of terrestrial 420	

water balance, there exist uncertainties stemming not only from model physics formulation but 421	

from the quality of the forcing data (Badgley et al, 2015).  Precipitation data sets (e.g. GPCC, 422	
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Global Precipitation Climatology Project [GPCP] and others) differ in sampling, gauge under-423	

catch, and data quality. More problematic is near-surface meterorology and radiative forcing.  424	

These variables are taken from reanalyses too but are bias adjusted using surface observations and 425	

satellite radiative fluxes (e.g. Sheffield et al, 2006, Weedon et al, 2011).  Given the contrasts noted 426	

between reanalysis VMFC and LSM P-ET it is necessary to assess uncertainties in the LSMs to 427	

further quantify their credibility vis-à-vis the reanalyses.  428	

Recent work by the LandFlux-EVAL community has highlighted uncertainties in LSMs, 429	

diagnostic retrievals and reanalyses.  In an initial assessment of flux estimates over the 1993-1995 430	

period, Jimenez et al. (2011) find ET uncertainties of order 0.50 to 0.70 mmd-1 relative to an 431	

annual mean of about 1.60 mmd-1.  Mueller et al. (2013) extend this study in developing a baseline 432	

time series of flux estimates including interannual variability and trends.  They attribute much of 433	

this uncertainty to differences in precipitation forcing used, the influence of water limited ET 434	

regimes and interception by vegetation.  On the other hand, there also exists a fair degree of 435	

sensitivity to model formulation evident when LSMs are run using identical forcing data 436	

(Schlosser and Gao, 2009). Lipton et al. (2015) point to ET differences between satellite driven 437	

diagnostic approaches and LSMs noting sensitivities to surface parameters and LSM forcing 438	

precipitation. Still, Mueller et al. (2013) find realistic interannual variations in ET from composites 439	

of these methods are present, including an upward trend between 1989 and 1997 followed by 440	

downward ET trend of during the 1998-2005 period.  This behavior is most robust for the LSMs 441	

and echoes the earlier results of Jung et al. (2010).  One common finding from these and other 442	

studies is that no single model can be regarded as sufficient and that multiple models with 443	

alternative forcing offer the most reliable syntheses of fluxes. 444	
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LSM ensemble mean climatological mean P-ET patterns (Figure 6a) look very much like 445	

precipitation climatologies with large values over the Amazon Basin, Maritime Continent, and S.E. 446	

Asia.  Storm tracks impinging on the west coasts of N. America and Chile are present. Still, 447	

quantitative differences exist among mean P and ET climatological means (not shown). Despite 448	

the climatological uncertainties, the global anomalies in Figure 1b show good coherence.  To 449	

assess more deeply the character of the P-ET anomalies comprising the ensemble estimate we 450	

examine two statistical metrics.  The mean signal-to-noise ratio (S/N) is defined as S/N451	

   where  is the square of the ensemble mean monthly P-ET anomaly and 452	

 is the mean of the individual squared departures of the P-ET anomalies from the ensemble 453	

mean monthly anomaly.  The S/N diagnostic (Figure 6b) is a local measure of uncertainty among 454	

the LSM members in defining P-ET monthly anomalies. Densely populated and gauged areas of 455	

the eastern US, Europe and China have systematically high values ranging from 5 to 8.  The 456	

periphery of Australia and South America also show values in the range of 3 to 5.  Deserts (the 457	

Sahara, Central Asia, and the interior of Australia) have the lowest values owing to sporadic rain 458	

as well as a dearth of gauges. S/N values within key tropical precipitation regimes of Brazil, New 459	

Guinea and central Africa are typically 3 or less and likely suffer most directly from insufficient 460	

gauge density.  These values are for 1.0 degree resolution data and it is important to keep in mind 461	

that spatial averaging to coarser resolution of several degrees enhances these numbers 462	

significantly. 463	

 For a more global skill metric we use the anomaly correlation coefficient (ACC) first 464	

introduced by Miyakoda et al. (1972):	 465	

                      (7) 466	
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Here, pi,j are the P-ET anomalies at gridpoint i, j at any given time for any data set and the 467	

ensemble mean anomaly is defined by m.  The angle brackets denote area-weighted averaging over 468	

all gridpoints i, j within the 60o N/S land domain. ACC values measure spatial pattern fidelity as a 469	

function of time.  Because we lack independent P-ET validation on these scales these diagnostics 470	

are more a measure of P-ET sensitivity to input data and model formulation than of accuracy. 471	

Results for the seven different LSM P-ET data sets relative to the six-member ensemble mean are 472	

given in Figure 6c. (As noted earlier we average the MERRA-Land and MERRA-2 P-ET values as 473	

input to the LSM ensemble mean.) MPI-BGC and ORCHIDEE both use GPCC precipitation.  474	

ERA-I uses GPCP precipitation which is strongly tied to GPCC gauge data but also differs because 475	

of an adjustment to deal with under-catch of gauges.  Thus these three precipitation forcing data 476	

sets dominate the six member ensemble mean.  Values are reasonably stable and generally lie in 477	

the range of 0.75 to .95.  Experience has shown that values above 0.60 generally are indicative of 478	

agreement on the synoptic scale.  Thus, from a global coherence perspective, the data sets are 479	

similar in their spatial patterns.  Sensitivity to the precipitation forcing has a significant influence.  480	

Accordingly, MPI-BGC and ORCHIDEE ACC values are each strongly correlated with the 481	

ensemble mean; ERA-I Land also shows high correlations.  CLM4C ACC values tend to decline in 482	

time, especially after 2000.  The much smaller number of precipitation gauges used in the CRU 483	

TS3.10 product forcing for CLM4C has been shown to lead to a systematic overestimation of 484	

precipitation since the mid 1990s (Trenberth et al, 2014; Dai and Zhao, 2016).  This appears to 485	

influence the lowering CLM4C correlations with time.  MERRA-Land and MERRA-2 P-ET 486	

values are systematically low although this happens in part because the Climate Prediction Center 487	

"Unified" (CPCU) and CPC Merged Analysis of Precipitation (CMAP) precipitation data represent 488	

one sample compared to effectively three GPCC forcing sets.  There are notable departures though 489	
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with MERRA-Land before 1982 and GLDAS-2 Noah in 2006.  These periods reflect outliers that 490	

originate in the precipitation forcing (CPCU, and the amalgam of data sets that are used for Noah).  491	

ACC calculations performed separately for P and ET (not shown) yielded uniformly high 492	

correlations for the former (>0.80) while those for ET averaged between 0.5 and 0.8.  The lower 493	

ET correlations likely reflect the varied physical formulations among the models and the 494	

uncertainties in radiative forcing and near-surface moisture and temperature. 495	

 496	

7. Isolating artifacts via REOF analysis (Assessing space / time variability) 497	

 To the extent that we believe the mean LSM P-ET trends (Figure 4b) the differences with 498	

the VMFC trends in Figures 3 (right hand side) and 4c indicate the regional trend errors or artifacts 499	

inherent in the raw reanalyses.  In this section we now determine how effectively the RPCA 500	

methodology can be used to capture these effects in a few modes.  501	

a.  Adjustment effects on regional trends  502	

 In section 3 we outlined the methodology of applying RPCA to the quantity VMFCpf in order 503	

to identify the leading structures and temporal variability of artificial variability induced by 504	

changes in observing system input. For most of the reanalyses a single RPCA mode, n=1, 505	

identified the globally-averaged trends characterized as step-like transitions.  However, it was 506	

found that typically three modes were needed to effectively capture regional trend artifacts. This 507	

determination was made by visually inspecting the RPCs and EOFs of each reanalysis VMFCpf 508	

and confirming that those modes contained RPC “discontinuities or steps” that coincided with 509	

satellite changes such as SSMI, AMSU or AIRS.  We also confirmed that these modes made 510	

changes that reduced the regional discrepancy between the trend patterns of VMFC in Figure 3 and 511	

the ensemble LSM P-ET in Figure 4d. Only the MERRA and MERRA-2 reanalyses showed that 512	
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additional modes were significant in changing regional trends.  Thus, we applied n=5 for MERRA 513	

and MERRA-2 and n=3 for the others as constituting the signal of changes induced by evolving 514	

assimilation data input.  The sensitivity of trend patterns to inherent subjectivity of this selection 515	

process is discussed below. 516	

 This new VMFC estimate for each reanalysis, VMFC*, can then be compared to P-ET of the 517	

ensemble mean LSMs.  Though VMFC* is now not formally independent of P-ET, none of the P 518	

variability has modified VMFC*.   The effects of these potential adjustments are presented in 519	

Figure 7.  The left panel contains the area-averaged VMFC signal (black) and diagnosed area-520	

average of the artifact that must be removed (red line).  The right panel contains the trends in 521	

VMFC*, the adjusted reanalyses after this artifact signal has been removed.  At the bottom of 522	

Figure 7 is the ensemble mean trend of VMFC*.  Note the geometric progression of the color scale.   523	

 (Recall that we have averaged the MERRA and MERRA-2 data and considered it as one of four 524	

reanalysis systems.)  525	

 It is clear from Figure 7 (left panel, red lines) that VMFCpf collects a large amount of trend or 526	

low frequency variability. For example, the impact of AIRS after 2002 in elevating CFSR VMFC 527	

is quite apparent.   SSMI availability after 1987 changes ERA-I and JRA-55 noticeably.  The large 528	

ERA-I VMFC jump in 2004 over coastal Ecuador / Colombia (Figure 4c) has a significant global 529	

impact.  The artifact time series for each reanalysis also has high frequency signals since 530	

significant observing system changes such as SSMI, AMSU and AIRS also affect the VMFC 531	

annual cycle. After adjusting the reanalyses at each gridpoint the spatial trend patterns (Figure 7, 532	

right panel) and the ensemble mean (bottom) are much smaller compared to those in Figure 3 and 533	

show significant changes in structure.  Over central Africa the amplitudes of VMFC* and LSM P-534	

ET decreases are much more consistent.  Both ensemble VMFC* and LSM P-ET (Figure 4d) 535	
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trends hint at a tendency for increases in moisture convergence to the south over Zambia / Angola 536	

and north over portions of the Sahel.  This pattern suggests perhaps increasing annual latitudinal 537	

excursion of the ITCZ in these regions. MERRA and CFSR VMFC* no longer have huge upward 538	

trends over Australia and the large VMFC increases over East Africa common to all reanalyses 539	

have been removed. The Amazon basin shows increased moisture convergence over time with 540	

associated reductions over southern Brazil.  There remain differences though with the LSMs 541	

positioning the P-ET increases over the headwaters region and the reanalyses having the upward 542	

VMFC* trends more toward the east. An interesting aspect of this analysis is the relatively small 543	

fraction of VMFCpf total variance needed to explained these regional trend artifacts: JRA55 544	

(18.09%), ERA-I (14.15%), MERRA (19.08%), MERRA-2 (15.29%) and CFSR (11.61%). This 545	

indicates that the bulk of VMFCpf variability does not project onto regional VMFCpf trends.  Each 546	

reanalysis’ leading mode largely explains the global average land trend and contributes typically 547	

about 6%.  Since the pre-filtering removes much of the physical signal we interpret this remaining 548	

VMFCpf as predominantly error in higher frequency VMFC regional signals.   549	

 The global land area-averaged VMFC* trends (60o N/S) shown in Figure 8 are now each much 550	

reduced.  The ensemble mean value (Figure 8b) is now 0.016 (+/- 0.13) mmd-1decade-1 over the 551	

period 1979 to 2012.  This result is much closer to the mean trend of the LSMs (0.007 [+/-0.010] 552	

mmd-1decade-1) and the AMIPs (0.012 [+/- 0.016] mmd-1decade-1).  553	

  Perhaps the most significant outcome of the VMFC adjustment is the improved agreement 554	

with LSM P-ET in terms of regional trend patterns and their amplitudes.  With these adjustments 555	

the pattern correlation of the trends increases from 0.41 to 0.55.  Two applications of a 9-point 556	

spatial filter were used prior to determining the correlations that raised the correlations by about 557	

0.09. To gauge how sensitive this result is to our selection of modes we repeated the analysis with 558	
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1-, 2- and 3-mode only corrections.  The resulting pattern correlations for the ensemble mean 559	

VMFC* with the LSM mean were .048, 0.48 and 0.50, respectively.  Higher modes (n > 5) were 560	

examined but their relationship to satellite changes was not clear; in keeping with a conservative 561	

approach to making corrections these were not used.  Individual pattern trend correlations were: 562	

JRA-55 = 0.48, ERA-I = 0.61, MERRA = 0.43, MERRA-2 = 0.44 and CFSR = 0.38.  Though 563	

ERA-I exceeded the ensemble mean, the value for an ensemble with ERA-I removed is 0.52, thus 564	

supporting the value of an ensemble strategy as generally providing more skill than individual 565	

ensemble members.   566	

The agreement in trend patterns and amplitudes between VMFC* and the LSMs (Figure 7, 567	

bottom and Figure 4d) is therefore quite improved over the raw VMFC.  Studies seeking to explain 568	

decadal changes and trend patterns like these have consistently pointed to SST variations as 569	

important controls on regional hydrologic anomalies even if details of patterns, seasonality, and 570	

intensity remain unresolved. The AMO has been found to influence rainfall over the Sahel 571	

(Folland et al, 1986; Giannini et al, 2003), northeast Brazil (Hastenrath and Greisher, 1990; 572	

Folland et al, 2001) and the U.S. (Enfield et al, 2001).  Gloor et al. (2013) note the effects of 573	

Atlantic SST changes on the upward trend in wet season rainfall over Amazonia since 1980.  Low 574	

frequency ENSO-like behavior of Pacific SSTs (Power et al, 1999; Zhang et al, 1999) has been 575	

argued as forcing for Global Monsoon variations (Wang et al, 2012).  Positive phases of the PDO, 576	

the North Pacific component of this SST variability, are associated with an increase in 577	

precipitation in the central and northern parts of the Amazon but decrease in the southern parts 578	

(Marengo, 2004).  These PDV teleconnections are global as evidenced by Lyon and DeWitt (2012) 579	

who have shown that recent Spring declines in East African rainfall are tied to cold eastern tropical 580	

Pacific SSTs. Asefi-Najafabady and Saatchi (2016) have noted a continued downward trend in 581	
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precipitation over central Africa by merging CRU and TRMM data, though Washington et al. 582	

(2013) strongly caution against reliance on any precipitation data set in this part of Africa.   583	

 584	

b. Adjustment effects on interannual variability 585	

 Time series of globally-averaged VMFC for the individual corrected reanalyses are given in 586	

Figure 8a with Figure 8b showing time series area-averages of ensemble corrected reanalyses and 587	

the mean LSMs.  Comparing Figure 8a to Figure 1a the reduced trends reveal more consistent 588	

interannual VMFC signals among the reanalyses and the relationship between interannual VMFC* 589	

and Niño 3.4 SST anomalies is much clearer. Ensemble mean reanalyses and LSMs (Figure 8b) 590	

correlate well (cor = 0.86). Ensemble averaging over multiple AMIP experiments reduces internal 591	

atmospheric variations (i.e. “weather noise”) that cannot represent the correct deterministic signals 592	

that were observed (Battisti and Bretherton, 2000). Thus, the remaining AMIP signal is only that 593	

component forced by SST.  Differences in AMIP P-ET or VMFC anomaly response structure to 594	

SST anomalies are also present.  These factors lower the AMIP correlation with the LSMs and 595	

VMFC* (cor = 0.64 and cor = 0.52, respectively).   The agreement between the three data sets thus 596	

confirms the significant role that interannual SST variations play in land / ocean moisture 597	

exchange. 598	

 To explore the degree to which spatial VMFC patterns have been affected, we assess the 599	

changes in VMFC (equivalently, P-ET) patterns via ACC, this time between the individual 600	

corrected reanalyses and the ensemble LSM (Figure 9).  The ACC of the ensemble mean raw 601	

reanalyses is also plotted (black dotted line) which indicates that on average the adjustment 602	

process has slightly degraded VMFC agreement with P-ET (less than 0.05 on average).  Here we 603	

see that on an individual reanalysis basis, the ACC is typically only 0.35 to 0.60.  Again, some of 604	
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this limitation is local to regional details of the ensemble LSM P-ET values.   But the skill of the 605	

ensemble mean corrected reanalysis exceeds that of the individual members. 606	

 An indication of where VMFC and P-ET agreement has changed can be gleaned from local 607	

correlations between their time series (Figure 10). There is excellent agreement in locations of 608	

dense station sampling and significant rainfall but there is a strong resemblance between Figure 609	

10a and the S/N estimates of Figure 6b.  This indicates the significant limitations of the LSM 610	

signals likely produced by rain gauge sparse density.  This lack of station coverage means that in 611	

some areas even where the corrected reanalyses are improved the LSMs have such poor ability to 612	

discern signals that they cannot confirm this.  Changes in correlation with the LSM ensemble P-ET 613	

compared to the raw reanalyses is shown in Figure 10b.  There are areas of improvement as well as 614	

reduced agreement. Many areas in the tropics are improved, but the sparsely gauged areas in 615	

Africa and the headwaters of the Amazon are not.  In central Asia agreement with the LSMs shows 616	

both strong positive and negative changes in VMFC / LSM agreement.  617	

 The results of Figures 9 and 10 might raise concerns about the effect the REOF adjustments 618	

have on interannual signals.  To check this we composited VMFC and P-ET anomalies based on 619	

warm Nino 3.4 SST anomaly maxima during boreal winters 1982/1983, 1986/1987, 1991/1992, 620	

1994/1995, 1997/1998, 2004/2005 and 2009/20010  (not shown).  Pattern correlations of VMFC 621	

and VMFC* with P-ET were 0.82 and 0.79, respectively.  All three composites had regional 622	

anomaly patterns the canonical precipitation anomalies first isolated by Ropelewski and Halpert 623	

(1987) and more recently by Camberlin et al. (2001), Grimm (2003), Hendon (2003) and Malhi 624	

and Wright (2004).  We conclude from these results that interannual variability related to SST 625	

forcing is not significantly altered by our RPCA adjustments. 626	

 627	
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8. Conclusions 628	

In this study we have sought to characterize the uncertainties in estimating variations in 629	

moisture transport of moisture from ocean to land.  Reanalyses and LSMs offer two nearly 630	

independent methodologies for estimating components of the atmospheric water budget. On 631	

seasonal and longer time scales moisture transport should be equivalent to net precipitation minus 632	

evaporation.  Though reanalyses offer VMFC estimates determined from dynamical modeling 633	

constraints on observations, the episodic introduction of new data sources, particularly satellite 634	

data streams, has introduced serious time dependent biases.  LSMs offer similar physically-based 635	

constraints on precipitation and surface meteorological forcing in determining P-ET.  Though these 636	

forcings also have their own uncertainties our assessment shows that they offer a strong 637	

quantitative assessment of VMFC issues.  We have also shown that RPCA diagnostics, though ad 638	

hoc, can be applied to adjust the raw VMFC estimates.  A posteriori, these error reductions are 639	

justified by improved agreement of regional trends between the LSM P-ET and VMFC regional 640	

trends.  Our findings can be summarized as follows: 641	

i. The large trends in near-global mean moisture convergence over land during the period 642	

1979-present in reanalyses are predominantly an artifact due to changes in assimilated data 643	

streams and the ability of those data streams to correct model biases.  These biases differ 644	

among reanalyses due to their differing physical parameterization formulations and aspects of 645	

the data assimilation methodology. Averaged over the ensemble LSMs a small net positive 646	

trend in P-ET (0.007 mmd-1decade-1) is found, but is only significant at 90% confidence.  647	

 648	

ii. Corrections to VMFC (P-ET) using RPCA with pre-filtering to identify the non-physical 649	

signal are effective in removing many of the problems and substantially enhance the agreement 650	
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in regional P-ET trends during the 1979-2012 period.  RPCA-based adjustments also result in 651	

an improvement in trend field correlation from cor=0.41 to 0.55.  Simple PCA is likely to fail 652	

as signals of the artifacts and those of physical variability are mixed.  The decision on how 653	

many modes are needed to represent artifact structure in any reanalysis is subjective and 654	

depends on cross-referencing RPCA results with assimilated observational data stream 655	

metadata.  656	

iii. Interannual ENSO-related variations and their decadal-scale modulation are highly 657	

consistent between the LSMs and adjusted VMFC time series (cor = 0.86) and composite El 658	

Niño P-ET and VMFC patterns (cor = 0.84).  Though the adjustments are not needed to detect 659	

these interannual signals (Figure 1a), the agreement between VMFC* and P-ET interannual 660	

variability is more evident in time series plots (Figure 8b). 661	

 662	

iv. Despite uncertainties inherent with observationally-constrained LSMs, these syntheses can 663	

help identify and corroborate more problems associated with reanalysis data changes.  The 664	

sparseness and uneven sampling of precipitation gauging in remote areas (e.g. tropical 665	

continents, especially central Africa) are a significant uncertainty in estimating interannual 666	

variability.  However, corrections to near-surface meteorology and radiative forcing are 667	

important  (Ngo-Duc et al, 2005) and need additional scrutiny. 668	

 669	

v. CMIP5 AMIP experiments, despite having somewhat distorted VMFC patterns not directly 670	

studied here, also corroborate our estimated VMFC* corrections.  Though not encumbered with 671	

the effects of changing observing systems, these experiments can only confirm the role of SST 672	
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forcing since internal atmospheric variability is only at best stochastically consistent with the 673	

historical record.  674	

 675	

 How do we envision the utility of the present results?  The broader problem of reconstructing 676	

water and energy budget variability, whether from reanalyses assimilating observations or from 677	

diagnostic methods (e.g. Pan et al, 2012; Van Dijk et al, 2014; Rodell et al, 2015; L’Ecuyer et al, 678	

2015) requires identifying and accounting for time dependent biases.  The present results are a step 679	

in that direction in that they would facilitate combining VMFC and P-ET estimates in a diagnostic 680	

approach.  From a broader perspective additional opportunities are apparent for indirect checks and 681	

estimates of VMFC in (1) and (2).  Satellite retrievals of Wa, P and ET are one direct means. The 682	

accuracy of these retrievals varies according to space and time.  Robertson et al. (2014) have 683	

recently shown that existing P and especially E estimates over global oceans have serious 684	

uncertainties for the purpose of climate variability studies.  Though retrieval physics errors 685	

contribute to these problems the inter-calibration of multiple sensors and temporal changes in 686	

global sampling are also important issues.  Improvements are actively being pursued.  The lack of 687	

robust passive microwave remote sensing before late 1987 on which these retrievals are based is a 688	

limitation.  From the terrestrial side, eq. (2), it is possible to determine changes in WT directly via 689	

the Gravity Recovery And Climate Experiment (GRACE) satellite mission (Tapley et al., 2004), 690	

and with RO measurements from river and streamflow gauges, recover a P-ET estimate.  Though 691	

GRACE measurements are a unique resource for enabling this approach those data exist only since 692	

2003. 693	

 Another source of information may come from reduced observation reanalyses that in addition 694	

to SST, sea-ice and radiative constituents, also assimilate surface pressure observations (Compo et 695	
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al, 2011) and marine wind speeds (Poli et al, 2015).  While these less robust data constraints also 696	

perhaps minimally enforce actual synoptic weather realism, discontinuities in their multi-decadal 697	

records appear to be less of a problem than those in the satellite record. These limitations are offset 698	

by the property that the SST (and surface pressure) forcing is largely free from the more discrete 699	

changes in atmospheric observing systems. Conceivably these integrations could also be run with 700	

observed land surface forcing as was applied in MERRA-2. 701	

 Ideally, improved model physical parameterizations and removal of data stream biases would 702	

mean that analysis increments or innovations would essentially be unbiased and normally 703	

distributed.  However, model physics improvements (e.g. AGCM convective, turbulence and cloud 704	

parameterizations; LSM soil, vegetation and water routing formulations) are long-term 705	

development efforts and our discontinuous data streams, particularly from satellites, will always 706	

present a time varying capability to correct assimilating model errors in water and energy fluxes. 707	

Continued re-evaluation of these modeling, retrieval and in situ resources is necessary to narrow 708	

uncertainties in quantifying climate variability. 709	
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 1018	
Table 1. Trend statistics (mmd-1decade-1) for VMFC* over land for various reanalyses and P-ET 1019	

for LSM members over the period 1979 to 2012.  In parentheses are errors calculated using lag-one 1020	

statistics to account for serial autocorrelation.  1021	

Land Surface 
Model 

P-ET Trend 

MERRA-Land  MERRA-2 

 
ERA-I 
Land 

 

GLDAS 
NOAH 

ORCHIDEE CLM4C 
MPI-
BGC 

0.023 
(+/-0.019) 

-0.002 
(+/- 0.019) 

-0.001 
(+/- 0.017) 

0.022 
(+/-0.012) 

0.009 
(+/- 0.017) 

0.023  
(+/0.015) 

0.028 
(+/-0.022) 

 

Reanalysis 
VMFC* Trend 

MERRA MERRA-2 ERA-I JRA-55 CFSR   
0.073 

(+/- 0.026) 
0.003 

(+/- 0.026) 
0.081 

(+/- 0.020) 
-0.030  

(+/- 0.018) 
0.074 

(+/- 0.025) 
  

 1022	
  1023	
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Table 2. Summary characteristics of reanalysis data sets used in this study. 1024	
 1025	

 Attributes References Comments 

ERA-I 

Cy31r2, 2006 IFS 
80 km (T255 spectral) 
grid with 60 vertical 
levels. Jan1979-
Dec2012. 
 

Dee et al. 2011; 
Dee and Uppala 2008; 
2009; Simmons et al, 
2010 

4-DVar system with adaptive estimation of satellite bias 
correction.  RTTOV radiation operator, many revised analysis 
and physics improvements over ERA-40 (e.g. humidity, O3). 
 
http://apps.ecmwf.int/datasets/ 

JRA55 
JMA Dec2009 
Operational System. 
TL319L60 (~55km). 
Jan1958- Dec2012. 
 

Kobayashi et al, 2015; 
Ebita et al, 2011 
 

Many updates over JRA25 including a new radiation scheme, 
4D-Var,Variational Bias Correction for satellite radiances, 
varying greenhouse gases. 
 
http://jra.kishou.go.jp/comm/application_en.html 

MERRA 
GEOS-5.2.0 AGCM 
0.5° x 0.667° grid;  
72 vertical levels. 
Jan1979-Dec2010. 

Rienecker et al.2011; 
Trenberth et al, 2011; 
Bosilovich et al, 2011; 
Robertson et al, 2011. 

3D-Var Gridpoint Statistical Interpolation Scheme  (GSI) with 
incremental Analysis Update (IAU). 
 
http://disc.sci.gsfc.nasa.gov/uui/search/%22MERRA-2%22 

MERRA-2 
GEOS-5.12.4 AGCM 
0.5° x 0.667° grid ;  
72 vertical levels. 
Jan1980-Dec2012. 

Molod et al, 2015; 
Takacs et al, 2015; 
Kleist et al. 2009b 

GSI, IAU; Significant additional new satellite data assimilated; 
Now conserves dry air mass. 
 
http://disc.sci.gsfc.nasa.gov/daac-
bin/FTPSubset.pl?LOOKUPID_List=MAIMCPASM 

CFSR 
GFS 2009 T382L64 
coupled atmosphere-
ocean-land surface-sea 
ice system, Jan1979-
Dec2009. 

Saha et al. 2010;  
Wang et al, 2010; 
Trenberth and Fasullo, 
2013 

3DVar GSI system, AER Radiation, Noah LSM with MOM 
ocean model Ocean is 0.25° at the equator, extending to a global 
0.5° beyond the tropics, with 40 levels. 
 
http://www.cgd.ucar.edu/cas/catalog/reanalysis/index.html 
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 1029	
Table 3. Observationally constrained Land Surface Models providing P and ET in this study.   1030	

Model Attributes Forcing Comments and references 

CLM4C 

Five primary sub-grid land cover 
types (glacier, lake, wetland, 
urban, vegetated) in each grid 
cell. The vegetated portion of a 
grid cell is divided into patches of 
plant functional types with 
separate energy and water 
calculations. 

Based on a merged product of 
Climate Research Unit (CRU) 
observed monthly 0.5 analysis 
(v3.0, 1901–2009; New et al, 2000) 
and the high temporal fidelity 
NCEP reanalysis forcing. 

Land model for the National Center for 
Atmospheric Research (NCAR) 
Community Earth System Model and the 
Community Atmosphere Model.  (Oleson 
et al, 2010; Lawrence et al, 2011; Weedon 
et al, 2011). 
http://www.cesm.ucar.edu/models/clm/ 

ERA-I Land 
Hydrology-Tiled ECMWF 
Scheme for Surface Exchanges 
over Land (HTESSEL).  80 km 
res with 3h integration steps. 

ERA-Interim near surface 
meteorology and radiation.  ERA-I 
precipitation is rescaled using 
GPCP v2.1. 

Updated physics including soil hydrology, 
a new snow scheme, multi-year satellite 
based vegetation climatology.  (Balsamo 
et al, 2012, 2015). 
http://www.ecmwf.int/en/research/climate-
reanalysis/era-interim/land 

GLDAS-2  
Noah 

1-D column model which can be 
executed in either coupled or 
uncoupled mode.  Governing 
equations of the physical 
processes of the soil-vegetation-
snowpack medium. 

Updated Sheffield et al. (2006) 
forcing dataset based on the 
NCEP–NCAR reanalysis near-
surface meteorological variables. 
GPCP, TRMM precip, SRB 
Radiation. CRU meteorological 
data used to correct biases. 

Development began1993 through a 
collaboration of investigators from public 
and private institutions, spearheaded by 
the National Centers for Environmental 
Prediction.  (Chen et al, 1996; Koren et al. 
1999; Rodell, 2004.) 
http://ldas.gsfc.nasa.gov/gldas/ 

MERRA-Land 

GEOS-5 Six-layer catchment 
land surface model Koster et al. 
2000. The basic land surface 
element, or “tile,” is a 
topographically determined 
hydrological catchment non-
congruent with overlying 
MERRA lat x lon grid 

Precipitation forcing with the 
global gauge-based NOAA Climate 
Prediction Center “Unified” 
(CPCU) product.  

Generated by offline version of the land 
component of the MERRA system.  
Revised parameter values in the rainfall 
interception model from those in the 
MERRA surface meteorological forcings. 
(Reichle et al, 2011; 2012). 
http://gmao.gsfc.nasa.gov/research/merra/ 
merra-land.php 

MERRA-2 Updated version of catchment 
model used in MERRA. 

Precipitation constraints comprised 
of anomalies from CMAP V0011 
and RT pentad product plus GPCP 
v2.1 climatology. Near surface 
meteorology and radiation from 
MERRA-2. 

MERRA 0.5 deg, hourly time series of 
precipitation (background) are constrained 
to have the same daily totals as 
constraining CMAP/GPCP data. (Reichle 
and Liu. 2014). 
http://gmao.gsfc.nasa.gov/ 
reanalysis/MERRA-2 

MPI-BGC 

Machine-learning methodology, 
“model tree ensembles”, to up-
scale eddy covariance (EC) 
measurements from FLUXNET 
(Baldocchi et al. 2001)) to a 0.5 
degree monthly product 

AVHRR NDVI data SeaWiFS 
fPAR; CRU near-sfc temperature 

ET estimates use GPCC V6 precip in 
classification step (Jung et al., 2009; 
2010.). We thus use GPCC precip to make 
consistent P- ET.  
https://www.bgc-
jena.mpg.de/bgi/index.php/ 

ORCHIDEE 

Solves water-energy-carbon 
budget. Represents ecosystem in 
terms of a range of Plant 
Functional Types using big leaf 
approach. Computes its own 
phenology. 

ERA-I fields constrained with CRU 
3.2 Sfc air temp and GPCC v6 
monthly precip 
 
Forcing precipitation, air 
temperature, wind, solar radiation, 
humidity and atmospheric CO2 

SECHIBA land-surface scheme, which is 
dedicated to the surface energy and water 
balances, and the carbon and vegetation 
model STOMATE.  Kriner et al, 2005; 
Weedon et al. (2012); Sitch et al, 2013; 
Poulter (personal communication). 
http://forge.ipsl.jussieu.fr/orchidee/wiki 
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 1033	

Figure Captions 1034	

 1035	

Figure 1.  (a) Time series of global land area-average (60oN/S) vertically-integrated moisture 1036	

convergence anomalies (VMFC) from various reanalyses.  Units are mmd-1 (left hand side scale). 1037	

Niño 3.4 SST anomalies (oC) are shaded gray with inverted scale on the right hand side.  (b) Same 1038	

as above but for P-ET from individual LSMs.  Ensemble mean is shown in black.  Units are mmd-1039	

1.  For both time series a three month running smoother has been applied for display purposes.  1040	

 1041	

Figure 2. Annual mean anomalies of LSM ensemble mean P-ET and globally-integrated 1042	

streamflow from Dai (2016).  Units are mm yr-1. LSM monthly anomalies from Figure 1 have been 1043	

summed over water year intervals beginning in October 1979. 1044	

 1045	

Figure 3. Statistics for monthly mean VMFC anomalies for various reanalyses over the period 1046	

1979-2012. Left (a-e): RMS of deviations (mmd-1). Right (f-j): Trends (mmd-1decade-1).   1047	

Figure 4. Ensemble mean statistics for reanalysis and LSM monthly anomalies over the period 1048	

1979-2012. Left panel: RMS (mmd-1) .   Right Panel: Trends  (mmd-1decade-1).  1049	

 1050	

Figure 5. Time series of reanalyses VMFC and ensemble LSM anomalies (mm d-1) over (a) 1051	

Equatorial Africa (c) Coastal Colombia / Ecuador region, and (d) Central U.S. (c) Shows MERRA 1052	

VMFC (red) and first two global PCs of vertically-integrated moisture increment.  1053	

 1054	

Figure 6. (a) Ensemble mean climatological P-ET (mmd-1).  (b) S / N for LSMs (see text for details 1055	

on calculation).  (c) P-ET ACC time series of each LSM with the ensemble mean. 1056	
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 1057	

Figure 7. (Left)  Time series of globally averaged, 60o N/S, reanalysis VMFC (black) and area-1058	

averaged corrections (red). Niño 3.4 SST x 0.1 is plotted as gray shading with inverted scale on 1059	

right hand side.  (Right)  Trends (mmd-1 decade-1) in VMFC* over the period 1979-2012 for 1060	

various reanalyses after corrections have been applied.  Compare to Figure 3, right which are the 1061	

uncorrected trends.  (Bottom)  Ensemble mean corrected VMFC* trends.  1062	

 1063	

Figure 8. (a) Time series of individual corrected reanalysis VMFC* global land area-average 1064	

(60oN/S). (b) P-ET from individual LSMs (black) and mean VMFC* from corrected reanalyses 1065	

(red) and AMIPs (cyan).  A three-month running smoothing is applied.  Units are mmd -1.  Niño 1066	

3.4 SST anomalies are plotted in gray shading with inverted scale (deg C) on right. 1067	

 1068	

Figure 9.  Anomaly correlations, ACC, between individual corrected reanalysis VMFC* and 1069	

ensemble mean LSM P-ET. ACC for the ensemble corrected and uncorrected reanalyses with the 1070	

ensemble LSMs is shown by the solid (dotted) black lines, respectively. A running 3-month 1071	

smoother has been applied to each time series for display. 1072	

 1073	

Figure 10.  Local correlations (1979-2012): (a) Ensemble mean adjusted reanalysis VMFC* and 1074	

ensemble mean LSM P-ET, (b) Adjusted VMFC* correlation with LSMs minus raw reanalysis 1075	

ensemble reanalyses VMFC correlation with ensemble LSM P-ET.  Note different color scales. 1076	

 1077	

  1078	
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 1079	
 1080	

 1081	
Figure 1.  (a) Time series of global land area-average (60oN/S) vertically-integrated moisture 1082	
convergence anomalies (VMFC) from various reanalyses.  Units are mmd-1 (left hand side scale). 1083	
Niño 3.4 SST anomalies (oC) are shaded gray with inverted scale on the right hand side.  (b) Same 1084	
as above but for P-ET from individual LSMs.  Ensemble mean is shown in black.  Units are mmd-1085	
1.  For both time series a three month running smoother has been applied for display purposes.  1086	
  1087	
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 1088	

 1089	
Figure 2. Annual mean anomalies of LSM ensemble mean P-ET and globally-integrated 1090	
streamflow from Dai (2016).  Units are mm yr-1. LSM monthly anomalies from Figure 1 have been 1091	
summed over water year intervals beginning in October 1979. 1092	
 1093	
 1094	
  1095	
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 	1096	

1097	
Figure 3. Statistics for monthly mean VMFC anomalies for various reanalyses over the period 1098	
1979-2012. Left (a-e): RMS of deviations (mmd-1). Right (f-j): Trends (mmd-1decade-1).   1099	
  1100	
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 1102	
	1103	

 1104	
Figure 4. Ensemble mean statistics for reanalysis and LSM monthly anomalies over the period 1105	
1979-2012. Left panel: RMS (mmd-1) .   Right Panel: Trends  (mmd-1decade-1).  1106	
 1107	
 1108	
  1109	
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 1110	

   1111	
Figure 5. Time series of reanalyses VMFC and ensemble LSM anomalies (mm d-1) over (a) 1112	
Equatorial Africa (c) Coastal Colombia / Ecuador region, and (d) Central U.S. (b) Shows MERRA 1113	
VMFC (red) and first two global PCs of vertically-integrated moisture increment.  1114	
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 1116	
 1117	
	1118	

 1119	
Figure 6. (a) Ensemble mean climatological P-ET (mmd-1).  (b) S / N for LSMs (see text for details 1120	
on calculation).  (c)  P-ET ACC time series of each LSM with the ensemble mean. 1121	
  1122	
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 1123	
 1124	
	1125	

 1126	
Figure 7. (Left)  Time series of globally averaged, 60o N/S, reanalysis VMFC (black) and area-1127	
averaged corrections (red). Niño 3.4 SST x 0.1 is plotted as gray shading with inverted scale on 1128	
right hand side.  (Right)  Trends (mmd-1 decade-1) in VMFC* over the period 1979-2012 for 1129	
various reanalyses after corrections have been applied.  Compare to Figure 3, right which are the 1130	
uncorrected trends.  (Bottom)  Ensemble mean corrected VMFC* trends.  1131	

1132	
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 1133	

 1134	
Figure 8. (a) Time series of individual corrected reanalysis VMFC* global land area-average 1135	
(60oN/S). (b) P-ET from individual LSMs (black) and mean VMFC* from corrected reanalyses 1136	
(red) and AMIPs (cyan).  A three-month running smoothing is applied.  Units are mmd -1.  Niño 1137	
3.4 SST anomalies are plotted in gray shading with inverted scale (deg C) on right. 1138	
 1139	
  1140	
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 1141	
Figure 9.  Anomaly correlations, ACC, between individual corrected reanalysis VMFC* and 1142	
ensemble mean LSM P-ET. ACC for the ensemble corrected and uncorrected reanalyses with the 1143	
ensemble LSMs is shown by the solid (dotted) black lines, respectively. A running 3-month 1144	
smoother has been applied to each time series for display. 1145	
 1146	
  1147	
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  1149	
 	1150	

 1151	
Figure 10.  Local correlations (1979-2012): (a) Ensemble mean adjusted reanalysis VMFC* and 1152	
ensemble mean LSM P-ET, (b) Adjusted VMFC* correlation with LSMs minus raw reanalysis 1153	
ensemble reanalyses VMFC correlation with ensemble LSM P-ET.  Note different color scales. 1154	
 1155	


